ARMY REeseArcH LABORATORY

Automated Routing of Unmanned Aircraft Systems (UAS)

by Edward M. Measure, David Knapp, Terry Jameson,
and Andrew Butler

]
ARL-TR-4916 September 2009

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
White Sands Missile Range, NM 88002-5513

ARL-TR-4916 September 2009

Automated Routing of Unmanned Aircraft Systems (UAS)

Edward M. Measure, David Knapp, and Terry Jameson
Computational Information Sciences Directorate, ARL

Andrew Butler
Physical Science Laboratory, New Mexico State University

Approved for public release; distribution is unlimited.
R e

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE
September 2009

3. DATES COVERED (From - To)

Final October 2006 to June 2009

4. TITLE AND SUBTITLE
Automated Routing of Unmanned Aircraft Systems (UAS)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5¢c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Edward M. Measure, David Knapp, Terry Jameson, Andrew Butler

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

Information and Electronic Protection Division

Computational Information Sciences Directorate (ATTN: RDRL-CIE-D, RDRL-
CIE-M)

White Sands Missile Range, NM 88002-5513

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-4916

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Unmanned Aircraft Systems (UAS) have become a key component of US military power and are likely to have an increasing
role in reconnaissance, surveillance, communication and combat. UAS operations are affected by weather and other
environmental effects, but usually have less capability to see, react to, and endure adverse environments than manned aircraft.
Weather effects thus become a crucial part of both operational planning and execution of UAS missions. The U.S. Army
Research Laboratory (ARL) has devised a weather effects tactical decision aid, which uses systems performance parameters, a
weather effects database, and observed and predicted meteorological (Met) parameters to plan routes through weather and other
hazards to carry out missions with maximum effectiveness and minimal mission risk.

15. SUBJECT TERMS
UAS, algorithms, automated routing.

17.LIMITATION | 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
16. SECURITY CLASSIFICATION OF: OF ABSTRACT OF PAGES Dr. Edward Measure
uu 46
a. REPORT b. ABSTRACT ¢. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
Unclassified Unclassified Unclassified (575) 678-3307

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Contents

List of Figures v
List of Tables Y
Preface vi
1. Summary 1
2. Background and Problem Statement 1
2.1 TNE UAS IMIISSION ...cuieiieie ettt steeste et sttt et e eseesseesteeseesbeebeaneesneeeeeneesteenseaneenneas 1

2.2 MEEETTECLS ...ttt et 2

2.3 Problem STateMENTccooiiiieiiee e 2

2.4 Approach to the ProbIem...........co i 3

3. Actionable Weather Intelligence 4
Bl WBALNET <.ttt b et 4

3.2 Weather Impacts 0N ArmYy SYSEEIMSeeiuieiiiieieeie ettt seeas 4

4. Route Planning: Avoiding Adverse Weather Impacts 5
4.1 MaNUal ROULINGc.uiiiiiieii ettt ettt ettt sneete e nns 6

5. Automated Routing: Graphical Idealization 7
5.1 Reduction of Path t0 @ Graphcooiiiiiiii e 8

ST O < PP PRI 9

5.3 CompPULING Path COSTSeoiuiiiiiieiiiie sttt sttt sbe e sreesbe e 9

6. Automated Routing: Searching the Graph 12
6.1 Automating Path SEarCh ... 12

6.2 Application to UAS Route PIanNingcccccvevriieiieie e 13

6.3 Search AlQOrthMSc.ooiiie e e 13
6.3.1 Breadth-First.......ccooiiiieiie e 14

6.3.2 Dijkstra’s Search AlgOrithm..........coooeiiiiiii e 16

6.3.3 Best First Search AIgOrithmcccooiiiiiiiiee e 20

6.3.4 The A* AlQOIthMmooiii e
7. AWRT Examples and Screen Shots
8. Conclusions and Future Directions
9. References
Appendix A. Examples of the A* Algorithm in Action
Appendix B. A*Algorithm Code for Route Finding
List of Symbols, Abbreviations, and Acronyms

Distribution

25

27

28

29

35

37

38

List of Figures

Figure 1. Diagram of IWEDA based route planning.cccooeriiierinine e 7
Figure 2. One route from LA 10 3C. ..ottt eneas 10
Figure 3. Breadth-first algorithm.ccooiiiiii e 15
Figure 4. Dijkstra’s algorithm pSEUAO COUE.uiiviiieiiii et 17
Figure 5. Flow chart of DijKstra’s algorithm.ccooiiiiiiii e 18
Figure 6. DIJKStra’s algorithim.c.ooiiiic it re e e e sreeeee e 19
Figure 7. Best First Search algorithim. ..o e 20
Figure 8. The A* algorithm PSEUAO COUE.ccuiiiieiiieii ettt st see e e e 22
Figure 9. The A* algorithm FlOW CRart.ooiiiiii e 23
Figure 10. The A* @lgOrithiM. ..ot sre e e 24
Figure 11. User interface for T-IWEDA route planning feature...........cccocvevveveiiiiine s 25
Figure 12. Straight line path FOr UAS. ...t 26
Figure 13. Path optimized for weather eFfECtS.cooii e 26
Figure A-1. A simple impenetrable 0DStACIE.ooiiiiiiiee e 29
Figure A-2. The initial stages of the A* algorithm SEarch.cccceoeiiiiiiin e 30
Figure A-3. Target found and path is being defined. ..o 31
Figure A-4. The shortest (Cheapest) Path.ccccue i 32
Figure A-5. Tackling a CompPIeX Path.cccciiiiiiii e 32
Figure A-6. The same search at an intermediate POINt..........ccccoeriii e i 33
Figure A-7. Defining the Path.ccuv i st te e e e s e e e ee e 33
Figure A-8. The SNOIESE PALN. ..o 34
List of Tables

Table 1. CoSt aSSIGNMENT TACTOTS.oviiviiiieiei bbb 12

Preface

Unmanned systems have become a ubiquitous component of the American military. Such
systems can conduct a wide variety of tasks that minimize the risk of casualties, including
counter mine and demolition operations, force projection, and above all, reconnaissance,
surveillance, and intelligence operations. To date, the largest share of such operations, and the
best payoff for investment, has come with Unmanned Aircraft Systems (UAS). UAS now exist
in a great variety of sizes and capabilities.

Like other aircraft, UAS are vulnerable to weather. Many of them are small with low wing
loadings. Usually, they are less robustly designed than typical manned aircraft, and some are
intended to operate at low altitudes. These factors tend to make them more vulnerable to the
weather than their larger and far more expensive manned counterparts. These vulnerabilities
mean that there is a combat multiplier for the mission planner who takes into account these
vulnerabilities and plans accordingly.

Therefore, the U.S. Army Research Laboratory’s (ARL) Battlefield Environment Division
(BED) has developed tools to facilitate that planning and maximize the efficient use of the UAS.
This report describes one such tool, which is the Aviation Weather Routing Tool (AWRT)
automated route planner.

Vi

1. Summary

Unmanned Aircraft Systems (UAS) are affected by the same atmospheric phenomena as manned
aircraft and in many ways are more vulnerable to them. Planning and carrying out UAS
missions in the most effective manner requires that the planning process properly takes into
account these effects.

The U.S. Army Research Laboratory (ARL) has developed an Integrated Weather Effects
Decision Aid (IWEDA) that uses four-dimensional (space plus time) meteorological (Met)
information, a database of weather impacts on Army systems, and expert systems technology to
produce time and location specific actionable weather intelligence for a large variety of Army
systems.

In this technical report, we describe the way we have used IWEDA to develop an automated
weather routing tool that finds best paths for UAS vehicles operating in the presence of weather.
This tool uses the weather impacts information to assign costs for each segment of the mission
and uses a computer-based path-finding tool, the A-star (A*) algorithm, to find the optimal route
for the vehicle.

The routing tool has been developed and demonstrated. Future enhancements being developed
include integration of in-flight weather data, and incorporation of methods for use for the full
spectrum of UAS missions.

2. Background and Problem Statement

UAS are affected by the same atmospheric phenomena as manned aircraft, including (but not
exclusively) cross and tail winds at takeoff and landing, turbulence, icing, visibility, clouds,
precipitation, and severe weather en route. Relevant weather information is needed for flight
planning, and current methods for providing that information and planning are inadequate. Our
automated routing system can provide that information in a form that will take weather and other
impacts into account when planning UAS routing. This report examines the basic elements of
our method for providing automated weather and other routing information for UAS operations.

2.1 The UAS Mission

UAS are capable of locating and recognizing major enemy forces, moving vehicles, weapons
systems, and other targets that contrast with their surroundings. In addition, UAS are capable of
locating and confirming the position of friendly forces, presence of noncombatant civilians, and
so forth. Current Army UAS missions include:

* Reconnaissance.

* Surveillance.

* Security.

* Manned-Unmanned Teaming.

» Communications Relay (HQDA [website accessed August 2009]).

UAS have been used extensively by all branches of the Department of Defense (DoD) during the
past decade in battlefield theaters of operation for a variety of purposes (weapons delivery,
reconnaissance, psyop pamphlet drops, etc.). More recently, UAS have been employed in border
patrol and other homeland defense missions. Because of their tremendous versatility, the use of
UAS continues to rapidly expand.

2.2 Met Effects

For most Army UAS missions, these remotely-operated vehicles are typically small and light-
weight (often smaller than common single-engine passenger aircraft) and are quite vulnerable to
various Met hazards. These vulnerabilities result in part from the size, weight, power systems
and relatively simple designs used for systems that are intended to be lighter, cheaper, and more
expendable than manned systems. Potential sources of vulnerability noted in the previous
reference include turbulence, clouds, precipitation, wind, visibility, temperature, and
illumination. These Met phenomena manifest themselves in effects on aircraft survivability,
sensor performance, aircraft performance and aircraft range.

Icing conditions, including carburetor icing effects, runway crosswind components that exceed
aircraft control capabilities, and extreme temperatures that negatively affect the aircraft’s
performance are adverse to UAS operations and must be considered. Met effects need to be
accounted for when determining UAS sensor performance, aircraft flight control, data transfer
communications, and risk of detection of the vehicle en route and over target areas by unfriendly
ground and air forces. Precipitation can erode and possibly destroy the small, rapidly spinning
propellers of some UAS.

2.3 Problem Statement

Operationally today, mission planning and flight route weather information along the planned
UAS routes have been conveyed to the planners and operators via a DoD standard pilot weather
briefing form. This form presents information primarily in text format or with simple map
sketches covering broad flying regions and across extended timeframes. It is left to the UAS
mission planners and operators to infer the specific Met conditions along the intended route at
the time the aircraft arrives at particular route waypoints and the impact of those conditions on
the mission. Deducing weather impacts is beyond the training of typical Unmanned Air Vehicle
(UAV) mission commanders, and the manual planning of routes is time-consuming and complex,

even for Met experts. The current inability to provide accurate, timely, and detailed Met
information, potential system impacts (on the aircraft itself and its on-board sensors), and
alternative routing options to UAS operators represents a serious lack of capability that reduces
mission success rates.

The incorporation of state-of-the-art Met information into UAS operations lags far behind the
aircraft and sensor technologies currently being employed and those planned for future fielding.
Some preliminary UAS Met Tactical Decision Aid (TDA) development work was previously
accomplished within the IWEDA database hosted on the fielded Integrated Meteorological
System (IMETS). The IWEDA weather impacts rules pertaining to UAS operations are very
preliminary and generic. The current suite of IMETS graphics products, which can depict UAS
TDA information, is not well-suited to operator needs. Therefore, a lot of work needed to be
done to develop user-tailored UAS en route weather conditions and routing options to avoid
adverse conditions. Our work here addressed the need to develop and deliver TDA technology
to include more timely and accurate Met information and impacts to UAS mission planners and
operators in more useful formats addressing a variety of operational scenarios.

2.4 Approach to the Problem

The technology of automated route planning has reached a stage of considerable maturity, due in
part to the needs of computing, the internet, and computer games. Routing is needed on the
internet to plan the routes by which messages are sent from one location to another. Computer
games use automated routing techniques to move computer characters around the screen, while
the computing process itself may use automated routing techniques to plan the execution of
interdependent bits of program code.

Applying these techniques to the aircraft routing problem requires at least the following
components:

» A database of current and projected basic Met parameters (temperature, pressure, a
measure of humidity and winds)

» A database of derived Met parameters (icing, turbulence, precipitation rates, cloud
volumes, etc.)

* A method for computing or otherwise finding weather impacts on the vehicle in question

* A method for generating three-dimensional paths between the takeoff point and mission
areas

* A method for comparative evaluation of the potential paths

The first three of the five components were adapted from the IWEDA, while the latter two were
developed in the current effort. This report discusses the status and prospects for each of these
components with primary focus on those elements that were developed here.

3. Actionable Weather Intelligence

3.1 Weather

Our information about the current state of the atmosphere can be encoded as a three-dimensional
table with each element of the table corresponding to a three-dimensional sub-volume of the
atmosphere. The information stored in that element describes the atmospheric state in that sub-
volume: temperature, humidity, wind speed and direction, turbulence, the presence or absence of
cloud or fog, precipitation and so on. Because the atmosphere has structure most of the way
down to the molecular level, such values are necessarily averages. Such tables are the product of
measurements, analysis, and atmospheric prognostic models.

A tremendous world-wide effort goes into the measurement of the atmosphere. Thousands of
weather stations, hundreds of twice-daily balloon soundings, hundreds of weather radars and the
globe-spanning satellites are continually monitoring the state of the atmosphere. The weather
analysis is constructed from all of these measurements, and it is interpolating where
measurements are missing or in conflict, and constructing averages for regularly spaced volumes.

Our measurements of the atmosphere would mainly be of historical interest if it were not for one
all-important fact: we know the laws of atmospheric behavior, encoded in the Navier-Stokes
equations it obeys. Except for two major problems, those equations allow us to predict the future
state of the atmosphere from its present state. The first problem is in order to predict the future
precisely, we need to know the present precisely, and the second problem is that those equations
are very difficult to solve and cannot be solved exactly except in very artificial circumstances.
The equations can be solved approximately using our necessarily approximate measurements as
input and with the help of very powerful computing systems. The programs that construct those
approximate solutions are called Numerical Weather Prediction (NWP) models. NWP models
output a grid of values of atmospheric parameters. The advance of technology has increased the
accuracy and density of our measurements. Meanwhile, computing power has increased even
more rapidly, resulting in increasing accuracy of weather predictions.

3.2 Weather Impacts on Army Systems

An important project of the ARL BED has been the effort to extract more utility from the
weather data describing the atmospheric state by supplementing that data with information about
weather impacts. Determination of weather impacts requires information about the requirements
and vulnerabilities of Army systems, as well as of the weather state.

Because there are many Army systems and many kinds of ways that weather can potentially
impact them, the task of evaluating all the impacts on any given operation can become very
complex. Such a complex and data-driven process is a good candidate for automation, or at least

partial automation. Developing such automation has been a major focus of ARL BED for some
years.

ARL has implemented a key component of such automation by the compilation of a large and
expanding database of weather impacts on Army and other DoD systems. For a large number of
systems in the inventory, including Soldier systems, the effects of various values of weather
parameters have been determined and their impact on the systems encoded in a specialized
database for use by the IWEDA, now being transitioned to the Tri-Service Integrated Weather
Effects Decision Aid (T-IWEDA). Currently, these effects are encoded as “red” for severe or
catastrophic system degradation, “amber” for marginal operational conditions; and “green” for
minor effect or no effect.

In the T-IWEDA, these rules are combined with information about the existing weather state as a
function of location to determine a map of areas where systems or operations will be adversely
affected by weather. The T-IWEDA is implemented via an expert system, which computes
locations where systems are affected and displays the output on two-dimensional map display,
which shows conditions as “red”, “amber”, or “green”. To use T-IWEDA, the operator selects
an operational domain, the source of atmospheric data, and a system or suite of systems to be
considered. The T-IWEDA then evaluates the weather impacts for all the systems considered
and displays a map of the red, amber, and green regions for planning and operational use.

4. Route Planning: Avoiding Adverse Weather Impacts

ARL’s objective was to produce an automated routing system that could consider weather
impacts on UAS and find paths that avoided the most dangerous weather hazards. What is
needed in order to plan routes to avoid the adverse impacts of weather? The requirements are:

» Information about the weather.
* The movement requirements of the mission.
» The systems required for the mission.

» Methods needed to evaluate the potential impacts of the weather on the required systems,
impacts that will usually be a function of time and location.

* A means to plan routes for the mission systems that avoid the worst impacts of the weather.

The first requirement is supplied by our weather nowcast databases, and the second and third
requirements need to be provided by the operational planners. The crucial role of evaluating the
weather impacts and their variation with time and location is played by the T-IWEDA system
discussed above. Mission planners and UAS commanders currently perform the route planning
task itself.

4.1 Manual Routing

In order to perform their task, mission planners and commanders rely on tools, such as weather
maps and text messages. These tools are often supplemented by a single vertical cross-sectional
analysis of the weather in the general area of the planned route. Satellite imagery and numerical
weather prediction models can provide atmospheric analysis at considerably higher resolution,
but it is difficult and complex to manually convert this information into weather impacts on
systems. Finally, the T-IWEDA system organizes much of this information in a way that permits
mission planners to see the weather hazards of potential routes by drawing them on an electronic
map.

There are still difficulties that remain. If missions can operate at multiple altitudes, the task is
complicated by the necessity to sort out effects by altitude. If, for example, the weather hazards
only exist at a few levels, the map will nonetheless display a hazard for this block, and
discovering the clear path requires drilling down to check each altitude for every potential path
being considered. This remains a time consuming and complex task, with ample opportunity for
error.

A manual version of flight routing software has already been incorporated into the T-IWEDA.
To use it, the operator chooses the aircraft type; uses the mouse to select launch, target, and
recovery points; and uses the keyboard to input flight altitudes at those points. The T-IWEDA
system plots straight lines between these points, notes the grid cells passed through or near, and
marks each of those cells red, amber, or green on the map, see figure 1 below. In figure 1, the
block labeled "Route Planning™ can be either manual or automated.

IWEDA Route Planning Architecture
' User

Creates, Edits, ~
Deletes Subdomains, . Clicks on Map

Userthanges

Subdomains

IWEDA 3

. Graphics
Exiernal PI ug In User Chcks Map
e | Application

Subdomains
% Met Data
Enters Times., Rilles Messages
Altitude, Risk, ™ COptimized Route
; . Messages
etc
[Alganthm
o Route] ata
Planning [©pimize
L = ! Route

Figure 1. Diagram of IWEDA based route planning.

If the mission is unfavorably impacted by weather effects, the operator may try choosing a
different path or a different flight altitude, or if the mission allows it, a different launch time. It
is this latter portion of route planning that can prove time and labor intensive, and that is the part
our effort proposes to automate.

The difficulties and limitations of manual routing led us to consider the potential for automated
routing by means of computer algorithms. Such routing has considerable potential for avoiding
adverse weather impacts and also has the potential to be generalized to consider impacts beyond
weather. There are several possible approaches to the path-finding, but all are based on using
some variation of a cost function. Section 5 discusses some options for automated path-finding
or routing.

5. Automated Routing: Graphical Idealization

For automated routing, much of the same core technology is used for determining the impacts,
including the Met database, the T-IWEDA rule database for the systems considered, and the
computed three- or four-dimensional database of impacts (the fourth dimension being time).

Additional mechanisms are needed for evaluating paths and for selecting alternate paths. In
particular, we will need to simplify the search space of possible paths and, additionally, to attach
information that will allow the computer to judge which paths are better.

5.1 Reduction of Path to a Graph

There are infinitely many paths between any two points in three-dimensional space, so how can
we compare them and pick one? It’s usual to avoid this difficulty by translating the problem to a
simpler one by discretizing the relevant portion of space into a finite number of volume
elements. Since we only have Met information for the volume elements of the weather grid, that
approach is natural for our problem, and it’s the one we used.

Once space is reduced to discrete blocks, the geometrical relation of the elements of space is
reduced to a graph by letting the nodes of the graph represent the individual volume elements
and the links between the nodes correspond to the connections between adjacent volume
elements. This scheme captures the geometric fact that you can’t travel from one volume in
space to a distant volume without passing through a linked sequence of volume elements
between them. To give a concrete example, imagine that A, B, C, and D are nodes and that A is
linked to B and C, B is linked to C, and C is linked to D. In that case, A-C-D and A-B-C-D are
paths from A to D but A-D and A-B-D are not since neither A nor B is linked to D. In three
dimensions, the linking is more complicated, since each rectangular parallelepiped volume
element shares faces with six other volume elements, edges with 12 more, and a corner with yet
another eight.

For problems like routing over computer or other telecommunications networks this kind of
reduction to a graph is extremely natural since their topology closely resembles the mathematical
graph. The idealization is not much greater for routing over effectively one-dimensional
connections such as highways or railroads, but idealization is clearly involved when a two-,
three-, or more dimensional space is reduced to nodes and links.

Once the search space is reduced to a graph, any given volume contains a finite number of non-
self-intersecting paths. Each path consists of a linked series of adjacent nodes, and costs can be
assigned to each link between nodes, or to both nodes and links. It is important for the
algorithms that we will use that all of those costs be positive, but this is not a serious limitation
for our purposes. The cost of the path then becomes a sum or other accumulation of the costs for
each segment traversed.

Because we wish indirect routes to be considered, it should also include some surrounding space.
We can limit the size of the search space, though, by excluding regions that are forbidden.
Examples would be cells containing impassible obstacles like mountains, cells above the UAS
flight ceiling, and regions dedicated to incompatible operational uses.

The path-finding problem has now become a graph theory problem: find a sequence of linked
nodes connecting the starting point to the destination point. We don’t want just any path either;

we want the best path, or at least, an acceptable cost path. We have mainly been concerned with
costs due to adverse weather, so our cost function is determined from the weather. Other impacts
on the system in question can be computed similarly on the basis of other mission risks, but we
have not done that here.

5.2 Cost

How does the computer evaluate which path is “best” or even “good enough”? The key idea is
the association of a computable cost function with each path, and searching the alternatives for
the best or lowest cost path. In principle, such a cost function can reflect not only weather
effects but also other constraints. There might be restricted flight corridors reserved for other
aircraft operations, or paths that would take the UAS too close to anti-aircraft fire, or a need to
prevent acoustic detection until the latest possible moment, as well as the very fundamental
requirement that the UAS should not unintentionally fly into any mountains or other obstacles.
Our initial implementation is intended to reflect only the basics plus weather—don’t fly into the
ground, don’t run out of fuel, and minimize adverse weather impacts, but we will show how the
method can readily be extended.

Implementation requires methods for computing the path cost and ways to deal with the potential
infinitude of possible paths. Since we are trying to avoid adverse weather here, system specific
costs are associated with adverse or potentially adverse weather. Our weather data, and
consequently our weather impacts, have finite resolution and are specified for elements of a grid
in space and time. At a given time step, the weather and weather impacts are represented by
single values for each parameter, and each such value is considered to be an average over that
grid volume element.

5.3 Computing Path Costs

Traversal of each grid element is assumed to have a cost, or risk, which is a function of the
weather in that grid element. A path between locations A and B is considered to be a list of
adjacent grid elements beginning at A and ending at B, and the cost of that path is an
accumulation of those costs over the elements of that path. Figure 2 is an example of a very
short two-dimensional path of just three segments, which visits four nodes.

Figure 2. One route from 1A to 3C.

In the example above, the cost of the path shown between Al and C3, or Cas,c3 can be expressed
as Ca1+ Car,a2 + Caz + Caze2 + Cg2 + Caa,c3 + Ccz Where Cag, a2 IS the cost to travel from point
Al to point A2, Cazis the cost to exist on point A2, and so on. A common cost associated with
travel is distance or time, and a common cost associated with existing on a point is whether there
is an obstruction there. Further discussion and examples can be found in Patel (website accessed
February 25, 2006). Detailed discussion, and the original derivation of the principle methods
used here can be found in Hart, et al., 1968 and Rensselaer Polytechnic Institute (website
accessed 1999).

In order to assign costs to the relevant elements of potential paths for the UAS mission, the Met
parameters database and the weather effects database must include the mission launch, recovery,
and target areas, as well as the intervening space. The T-IWEDA rules are used to compute costs
per segment and cost per node.

Most of the weather impacts portion of the cost is computed from the weather impacts thresholds
in T-IWEDA. The T-IWEDA rules specify values of weather parameters, such as turbulence,
that present a severe risk “red”, moderate risk “yellow”, or little or no risk “green”. In T-
IWEDA, the effects are computed as Boolean values— it is either true or false that a parameter
value exceeds the “red” or “yellow” threshold found in a rule. The cost function, however, is
computed on a more continuous basis. Those values are used to compute costs for path segments
passing through a region with those parameter values. Since the costs are numbers, the costs

10

have finer resolution than the “red”, “yellow”, “green” T-IWEDA status. The cost is determined
by comparison of the parameter value with the rule thresholds. Thus, values that just top the
“yellow” threshold and might pose a slight risk are getting lower cost s than values that are close
to the “red” threshold.

An example cost calculation might concern a vehicle with a sensor package that was vulnerable
to cloud (because the lenses fog). Suppose that the T-IWEDA thresholds were “yellow” for a
probability of greater than 30% that the given volume would have too much cloud and “red”
when that probability was greater than 60%. One possible assignment of cost would be C=(p-
20)"2/100 for p > 20 and 0 otherwise. Under this system, the “green” value 28% translates to
0.64, the barely “yellow” value p = 32% to C = 1.44, the seriously “yellow” of p=60% becomes
C=16.0, and “red” 90% becomes C=(90-20)"2/100 =49. In practice, we more usually made cost
a linear function of the threshold violation.

Weather conditions that are not necessarily severe can also play a role. One important
consideration in mission planning is fuel consumption. Fuel consumption is only a major
consideration when there is a danger of running out. In that case, it threatens loss of vehicle or
failure of mission and a potentially catastrophic cost. Consequently, it is useful to have a fuel
cost function that keeps track of how much fuel is likely to be used on a potential path.

Fuel consumption depends on a number of things, including speed and altitude, but especially on
the wind. Small UAVs in particular are rather slow flyers, so a strong cross wind or head wind
can greatly lengthen a mission and increase fuel consumption. We consider this cost
computation in some detail below.

Let the fuel consumption rate be f = f (air speed, rate of climb, etc.). The fuel consumed in
moving through the sub-volume is f*t, where t is the time taken to traverse the sub-volume. If
the UAS travels a distance d in traversing a grid sub-volume, then d = vg*t, where vy is the
ground speed, so t =|d| /| vg|. Here, and subsequently, bold will be used for vector variables.
The notation |d| refers to the length of the vector d.

In equation 1, the ground velocity is related to the air velocity and the wind velocity by:

Vg =Va+V 1)

where v,=the velocity relative to the air of the UAS, and V= the wind speed in the grid sub-
volume in question.

Thus, in equation 2, the fuel consumption in the grid cell is given by:

__ldl 2)
|Va+V|

11

Equation 2 is just the cost for one grid volume’s fuel use. In order to calculate the cost for a
whole path, it is necessary to add up the cost for all the elements of the path. For fuel, that is a
simple addition. In equation 3, once a path or path segment is identified, the fuel costs for each
sub-element are computed, and the total cost is added up:

Ci =ZN: Ci(i) (3)

where “i’=the path segment, and Cs (i) =the cost associated with that segment.

Fuel cost is a good example of a go or no-go cost. Since fuel consumption is usually only a
problem when there is risk of running out, it’s probably sensible to have the fuel cost be a
separate component of the total cost with a threshold. That is, its contribution to the total cost
would be small until a critical threshold was reached (in danger of running out of fuel) and then
rapidly increase to a large value.

Table 1. Cost assignment factors.

1. Impacts of weather on T-IWEDA rules for an asset are included in calculations and priority is given to
unfavorable impacts over marginal impacts.

2. Altitude restrictions may be accounted for by restricting the search space.

3. Flight time is accounted for using ground distance traveled, as well as wind information to calculate
airspeed. A constant (user-defined) air speed is assumed. Due to this fact, fuel consumption may be
determined accurately from the generated route’s flight time.

4. The degree of acceptable risk that the user enters is used to determine the relative weight assigned to
weather impacts as opposed to flight time. So a “careful” path will take more time to avoid weather
impacts, while a more “risky” path will attempt to save time by cutting through small patches of harsher
weather.

5. The flight time for an asset is accounted for by choosing weather forecast data times closest to the asset’s
current time, which is adjusted granularly for each new cell that the asset passes through.

6. Automated Routing: Searching the Graph

6.1 Automating Path Search

It remains to be explained how the computer finds a suitable path from one location to another in
the graph. The basic idea is for the computer to start at one of the endpoints and consider first
the paths to adjacent nodes, then to the nodes adjacent to those, and so on until it encounters the
target nodes. Meanwhile, it has been storing information about the partial paths it has

12

constructed, which permits it to choose which one is of lowest cost. As we will see, there are
many variations to this idea, and each is with its advantages and disadvantages.

In the most general graph, it might be necessary to consider every possible path between takeoff
point and destination in order to find the least cost path. Ours has some simplifying features. In
particular, costs are always positive. For example, you can’t decrease cost by going around a
loop. Also, we will assume that costs don’t depend on the order in which the nodes are
traversed. Finally and very importantly, we will keep in mind that our graph is a representation
of an underlying metric structure (the ordinary three-dimensional Euclidean distance), and that
information makes possible informed search, which often leads to a more efficient search.

The obvious idea behind informed search is that if you know in which direction the target is, it
might be a good idea to look first in that direction. That notion is not sufficient for a computer
algorithm, since the straight line path may lead into an obstacle or a cul de sac. One way to
capture the information that makes possible informed search is to make use of a heuristic. In our
case, the heuristic used is a number associated with each node that is proportional to the
Euclidean distance from that node to the target or destination node.

Thus, we have two pieces of information upon which to work: the cost function g(x), which
measures the cost of getting to a given node from the start node, and the heuristic function h(x),
which depends only on the distance from the given node to the target node. The cost function
will, of course, depend not only on the given node but on the path taken to get to that node. It is
a very important simplification that we can choose a strategy that makes it possible to assign this
cost uniquely without searching all possible paths.

6.2 Application to UAS Route Planning

Several complexities come into play when we attempt to apply the technique discussed above to
UAS route planning. Perhaps most obviously, we are talking about travel through three-
dimensional space. This is not an obstacle in any fundamental sense, but it does mean that the
number of search space cells to be explored grows with distance at a more rapid rate (x*3 versus
x"2). In consequence, the advantage for an algorithm using a distance-to-target heuristic tends to
be more pronounced.

6.3 Search Algorithms

Our type of search is special in several ways. First, we assume a known destination point and a
known starting point. Second, we assume that the costs of each link are known before the search
begins. In addition, we will assume that all costs are positive. Most importantly, we do have a
useful heuristic, since we can compute the Euclidean distance from any given node to the
destination node. Finally, we assume that the cost of a link is independent of the order in which
links are traversed.

13

It may help visualize how our algorithms work by considering the task of finding the shortest
path between points. For that case, the cost function is just the distance traversed between the
points. A straight line is the shortest path if there are no obstacles, but obstacles mean that the
distances travelled in alternate routes around them need to be compared. Computerized search of
a graph requires a certain amount of bookkeeping. We assume that we start with a knowledge of
what is connected to what (for our case, volumes in space are connected to each adjacent
volume) and what cost is associated with such connection. The algorithms we will consider each
involve a systematic search outward from the start point in an attempt to reach the destination.

In particular, we will need to keep track of what parts of potential paths we have looked at and
don’t have to be further examined. For this, we will need a couple of lists of nodes, each initially
empty, which we will refer to as the “open list” and the “closed list”. We also need the concept
of the parent node, which will be key to organizing our partial paths. The start node will be
parentless, but every other node which reaches the closed list will have a unique parent. A chain
of parent-child relationships to the start node will connect the node. This permits every node on
the closed list to define a path, terminating on that node and, defined by the chain of parent-child
relationships, originating on the start node and terminating on the node in question.

It’s useful to note that the parent-child relationships define a specific type of directed graph, a
tree graph, which is a subgraph of the original graph. This graph has all links, except the parent-
child links, erased and the parent-child links are made one-directional from parent to child. The
virtue of the tree graph is that there is a unique path from each “bud” of the tree back to its
“trunk”. When one of these buds reaches the destination node and the desired path has been
found, it is just the reverse of child-parent path from bud to trunk. See, for example, figures 3, 6,
and 7, which represent the parent-child relationship by arrows, each of which should be thought
of as pointing to the current node (square) from the direction of the parent node (square). The
chains of green squares in the figures represent the path found. Note that each green square is
the parent of the next one and the child of the previous one.

Starting in section 6.3.1, we consider four different search algorithms, which could be employed
and finishing with the one we actually used. The point of considering the others is that their
strengths and weaknesses illustrate the nature of the problem and its potential pitfalls.

6.3.1 Breadth-First

Probably the most straightforward search algorithm is breadth-first. The strategy here is to
expand outward from the start node. Wikipedia has an excellent but slightly incomplete
description:

14

1. Put the root node on the queue.
2. Pull a node from the beginning of the queue and examine it.
a. If the searched element is found in this node, quit the search and return a result

b. Otherwise push all the (so-far-unexamined) successors (the direct child nodes) of this
node into the end of the queue, if there are any.

3. If the queue is empty, every node on the graph has been examined-quit the search and
return "'not found™

4. Repeat from Step. (Wikipedia, [website accessed August 8, 2009]).

The description above leaves out an important detail. In step 2b., when the unexamined
successor nodes are pushed on to the queue, the current node is marked as its “parent”. Thus
each node that has entered the queue has a unique parent. When the target element is
encountered, there is, as noted above, a unique backtraced path from parent to parent all the way
back to the start element. The path thus found, when reversed, is the sought-for path from start
node to target.

In terms of our lists, step 1 consists of adding the start node to the open list, and step 2a. checks
each member of the open list (the “queue”) to see if we have reached the goal, and, if not, step
2b. moves the current node to the closed list and all nodes adjacent to closed nodes to the open
list (see figure 3).

IEEENEEENENEESEEEEIEEENEESE NN NSNS EEEEENE NN NDNENEEEEE
AR R AR AR AR ARAAAAAIAAAAAAAARAARAARARAADDD DA
ARA AR REARARRRERA hAAAAAARARAAARARARAARARRARRA
AR KRR AANAAARAANAARAARNARRAADNAPN
RARAR AR RARARRAEER A AAAARAARRARAARARAARRARARA
AR R R AR ERERRRRRER AAAAAAARARAARAAAARAARAAAAARN
AR AR AR AR AR R A AAAAAAAAAAAAANZAADARADI P
AERARARAREAREARARLAAAAAARARAAARARARRARAA s HH
AR AR AR AR A AR AAAARAAAAANARAAAAA AR A AREENE
A AR AR A AR AR AR L RARAARARRARAARARRARRARRAR
R AR R R R R L AAAAAAAARARAAAAA AR A AARAAN
IR ARRRARAARARRARRALAAAAARARRARAA AAARARN
R AR R AR AR R AR AR G AAARANAARARR ARAAARRN
REARARARARARARRALER L AAAZRRAAAAN ARAARARN
AREAEREAREARREALRR L AAAARAARAAR b h s
RARRRRREREEREARERLAAAARAADAAN EEEEEEE
AARRARARARRARLRALER £ AALERAARN EEEEEEN
RARREERAAEAREARER+AAASAADLH AAARAAN
AEAREAERALEAEERLELAAAR A NN HEE 4+
AERE AR AL AR R R KRR AR ARAN |] EEEP
AERARRAERRARREAREE hAAAAA uA Y
ARARARARARRARRAKLRR 44220 + A P
e ey | B +ul
e o o

e v W I

Lt it i

R

W

W

T I I IR N R I

R

R

R R

Y

e e

W

e s

e v W

T I N N R e

I W e e]

W e N e e
I R e e N e e e
v @ e e W e e e e
o e e e R e e e

Figure 3. Breadth-first algorithm.

15

The breadth-first algorithm finds a path, but is often quite inefficient. In general, the path found
will be minimal in number of links but not in cost. “Blue” is the starting node, “red” is the
destination node, and gray squares are blocked. Arrows in squares point to the square (node) and
from its parent square. Squares with arrows were tested, and those without were not. The green
squares form the path found by the algorithm. Figure 3 was produced using an applet written by
Baur (website accessed 2008).

The breadth-first algorithm will find a path, if it exists, (see figure 3) but that path is not
guaranteed to be the lowest cost. No account of cost at all was taken in the algorithm, but the
path found is minimal in the sense that it contains the least possible number of links. Since it
successively searches all accessible links until it reaches the target, it is likely to be inefficient.

6.3.2 Dijkstra’s Search Algorithm

Dijkstra’s algorithm has many points of similarity to the breadth-first algorithm, but one crucial
difference — it finds a lowest cost path. In the breadth-first algorithm, the nodes on the open list
are all the same link number from the source, and since every open node is explored before
adding new nodes to the open list, the order in which they are explored is unimportant. Each
node of a “shell” of nodes of link number n is explored before any node of link number n+1.
Since cost is not counted, any adjacent node in the current shell is an equally suitable parent for a
node in the next shell. This makes possible a very simple algorithm for assigning parenthood.
Considering the nodes in the current shell one at a time, it may be assigned as parent to every
adjacent shell, which does not yet have a parent.

This simple scheme is not adequate for Dijkstra’s algorithm, since a given open node may be
reachable from several different already-explored nodes, and the costs will not always be the
same for each. Moreover, the lowest cost path to a given node might not come from the previous
shell. A path of link distance n + m might turn out to be cheaper than any path of link distance
m. Consequently, a certain amount of technology is necessary to unambiguously assign costs in
a step by step fashion.

The idea is whenever a current node is added to the closed list, any adjacent nodes not already
open or closed are added to the open list. The cost g(x) of each such adjacent node is compared
with the g’(x), the cost of the current node plus, the link cost from the current node, and if g’(x)
is less than g(x), g(x) is reset to the value of g’(x), and the current node is made the parent of that
adjacent node. Cost and parenthood are still tentative at this point, since it is possible that a
lower cost path, possibly with more steps, exists, which does not pass through the current parent.
The current node is then moved to the closed list, and the open list is searched for lowest cost
node.

This is the same procedure that led to the tentative cost, but now that the previous node has been
moved to the closed list, it can be seen to be the actual cost (and similarly the procedure that
formerly gave the tentative parent now gives the actual parent). The only other possibilities are

16

that there is a lower cost path, either directly from some other closed node or passing through
some other closed node to an open node and thence to the node in question. The first possibility
can be excluded since if there were another closed node adjacent from which a lower cost path
could have been found it would have been found during the addition of that node’s adjacent
nodes. The same logic dictates that no other open node could be reachable more cheaply than
the node being examined since the cheapest path to it would either have to pass through the
current node or one of the other closed nodes, and costs are assumed to be always additive and
positive. Thus, the cheapest open node is added to the closed list, and then it becomes the new
current node, and the process continues.

Because a very similar logic is used in the A* algorithm, the algorithm that we decided to use,
we provide pseudo code for Dijkstra’s algorithm below. The following pseudo code for
Dijkstra’s algorithm is adapted from Wikipedia (website accessed August 18, 2009). The pseudo
code given is simplified in that it computes the distance from the start node to every node in the
graph (see figure 4).

1 function Dijkstra(Graph. source):

2 foreach nodexin Graph: // Initializations

3 cost[x] = infinity /A Unknown cost function from start fo x

4 parent[x] := undefined // Parent node in optimal path from source

5 cost[startnode] =0 // Cost from start to start

6 QO :=thesetof all nodesin Graph // Allnodes are unoptimized - thus are in Q
7 while Q is notempty: // The main loop

8 Current = node in Q with smallest cost[]

9 remove Current from QO

10 for each adjacent nodex of u: // where x has not yet been removed from Q.
11 alt = dist[x] + cost between(Current. x)

12 if alt < dist[x] // Relax (Current, x))

13 cost[x] = alf

14 parent[x] = Current

15 return parent[]

Figure 4. Dijkstra’s algorithm pseudo code.

17

Figure 5 below illustrates the flow chart for Dijkstra’s algorithm.

/For each node x A

Set cost(x) := Infinity
Set parent (x) := undefined
\Move all xto Q

I

4 Y

Set cost(start) := 0

)

A8 J

<&
<

Y

NO PATH Exists

Q not empty STOP

Set Current = smallest cost
X. Move current to open
from Q

DONE

Current =

target? Path Found

/For each node x adjacent to \
Current:
Set gprime := cost(Current) +
cost(Current, x);
If (gprime < cost(x))
Cost(x) = gprime
Parent(x) = Current

o /

Figure 5. Flow chart of Dijkstra’s algorithm.

At this point, we have already checked the costs to each of the nodes adjacent to the start node
when we next consider links to all of the (as yet unclosed) nodes adjacent to the closed nodes.
Such links will either originate on the start node or the already evaluated node so the net cost will
be either c(link) + O for links originating on the start node or c(link)+c(1) for links originating on
the already evaluated node, which we will call “1”. Among all the partial paths just created, one
will be the cheapest, and we now have the cost for that node, which we call “2”” and can now
close. The point is that we can be sure that there is no other path to 2, which could be cheaper,
since it would have to have some positive link cost added to getting to some other parent node,

18

which was already more costly to get to than the path currently found. The procedure can be
iterated until the target node is reached or all reachable nodes have been searched. If the target
node is reached then the chain of parent to child nodes leading to it is a least cost path (there
might be more than one).

The algorithm described in the paragraph above does not use the informed search idea, but
informed search introduces some complications, as well as efficiencies.

Dijkstra’s algorithm takes the brute force path of searching steadily outward. The algorithm first
checks all the closest grid elements (for a planar grid or square that would be the four edge-
adjacent squares) then the next closest (the four new squares corner-adjacent to the original
square) and so on until it reaches the target. One advantage of this method is that each new grid
element that is searched has a unique parent square so that once the search pattern reaches the
target square, the shortest path or, more precisely, a shortest path (there may be other paths of
equal cost) consists of the target square and all of its parents (see figure 6.

RRRERRE LR ARt AAAAAAAAAAAAAAAAAAAAAAANA
LA AL AL AL AL AL AL AN A R EEEEEFEEEFEEEFEEEFERE] | | |
RARRRARRELEERARERAAR+AAAAAAAAAAAAAAAAAAAAAAAA A A HHE 1
RARRRARRELEERARERAAR+AAAAAAAAAAAAAAAAAAAAAAAA A A HHE [11
RARRRARRELEEERARAAR+AAAAAAAAAAAAAAAAAAAAAAAA A AHHE [11
RARRRARRELLEERARRRAR+AAAAAAAAAAAAAAAAAAAAAAAAS>THEE HEE
RARRRARRELEERARRRAR+AAAAAAAAAAAAAAAAAAAAAA:HAR--HAEE HEE
RARRRARREEEERRRELAR+AAAAAAAAAAAAAAAAAAA A ANHEEE [11 [T1
RARRRARRELLEERARRAAR+AAAAAAAAAAAAAAAAAAAAAAAAANE HEE HE
RARRRARRELEERARRRAR+AAAAAAAAAAAAAAAAAAAAAAAAAHR HE EEE
RRRAARRLEEERRRARRLAAAAAAAAAAAAAAAAAAAAAAAA"HHEE HH EHER
ARARRRARRELEERARRRAR+AAAAAAAAAAAAAAAAAAAAAAAAAHR HE
RARRRARRLEEERRRAARRLAAAAAAAAAAAAAAAAAAAAAAAA AHHE [
L A A A N R A A e e ey |
RRRARARRRLEEERRERAARR+AAAAAAAA2 A EHNEEEEEEEEEEEN N
RRRRARRELEERARERRARt+AAAAA A AHEEEEEEEEEEEEEEN '
LALSLALACALNCACNCNCSCNLALALLALALAE IR [| [[[EEEEFEEEEEEE] | M
LALNLALACACNCNCNCNCNCNLALALALALAAEAE IR | | | [[EEEEEE] - CICIEE | |
LALNLALACACNCNCNCSENCNLALALALALAAEE IR | | [[EIEEEEEL A | [[[
LALALALACALNCNCNCNLNCNLALALALALALAE IR IEIET | [REEEIEIE] A [[[[4]
CALSLALALACNCNCNCNCNCNLNLALALALAAEIE IR | | | | CRIEIEIEIEl~EY | | | |
Lttt et EIEIEY [[| | | BRIl ~EY | | [E%Y |

v HHE
[

[
"
u
u
u
u
"y
"
u

W e o o - R
A aarararara- | ||

"
u
u
u
u
"y
A
"
u

s
e e

W e e
W e e
W e e e
W e e
W e e Tt
W Tt
W e e
W e
W e
W e
zzzzzzzzzzzzzzz+&&&&&&&&&&&&&&&&&&&&&&&&
W e e e e e e
FII

e | ||

Figure 6. Dijkstra’s algorithm.

Dijkstra’s algorithm (figure 6) finds the least cost path, but the efficiency is not necessarily ideal.
“Blue” is the starting node, “red” is the destination node, and gray squares are blocked. Arrows
in squares point to the square (node) and from its parent square. Squares with arrows were
tested, and those without were not. The green squares form the path found by the algorithm.
This figure was produced using an applet written by Baur (website accessed 2008).

19

The disadvantage of this algorithm is that all grid elements closer to the origin than the target
need to be searched (see figure 6), as do some of those equally close to the origin. Compared to
the A* algorithm, it is usually less efficient. Of course most of those grid elements searched
won’t even be in the right direction as the target (see figure 6 and the figures in Patel [website
accessed February 25, 2006]).

6.3.3 Best First Search Algorithm

Another type of algorithm can make use of information like the direction of the target. An
example is the so-called Best First Search (BFS) algorithm. When the direction to the target is
known, this information can be encoded in a heuristic that tells which squares to search first. In
this case, it is the square that lies in the direction of the target. Under many circumstances this
method is much faster than Dijkstra’s algorithm, since if a relatively direct path works, it winds
up searching a much more limited set of paths (see figure 5 and figures in Patel [website
accessed February 25, 2006]). The most obvious heuristic to use is the distance to the target.
The least distance heuristic here serves as the only cost function.

lll
RERERAEREALEAAARASIR A AAARA

LN NN SRR r] | | Bl)

e+ A BER+ERER> 222
LS LSS r | | B | PP
REreEnrREnRRRsrss+ A BERR+EEOY»» A~
e+ A2REsEEEROEERER > »
e e +REEER - AERCERREE S~ »
e s ANEEREDERA
eeeeeeeeeeeeee B+ 2 HEDEEE
RERERRRRERERE ks HEDE
RErRERREREr e Exs e BEEPE
REREERRERELR"RSR L N BEEE
RERERERAAAAAAAA AR AR AEED
RRRRR+Jﬁﬂﬂﬁﬂﬂﬂlﬂﬂﬂﬁ++++ll
e+ ENENEENEEEEEEEE -EE
Rﬂ+)Dlllllllllllllllll+ul
~+EDEEEEEE .
~CENEEEE A+ EE

Q
o
e

u

-
sl
u
]
]
u
|
u
]
=
[«/]
|
L]
ENNEERRCEEMAE « +

BREER > 2 rrrA2AAAR

BEO« 2 2rrpn

BRO s 22222220
BEO A 2AAAAAAAA
EEEED

3 B

HEv +«~HEEEEN+ v+ BEOMNE+
EE. v ¢~ EEENENENES. +ENENE

A3 1[5 3]

AT T TT T
BERCEEEEEEEME Y + % Y v Y N e Y Y W e Y WY N ey

HEEEEEEEEEEEEEE + % e v e e e e
B e e
el rrptelrrerrnpen el el il rig

|

[

W
o
e
w il
HEE
EEE
HER
A+l
|
5]
u
G

ENNEN« «
E>EEE v

7]
OENEEEEEER. v v v v EHNEENNEEEEREEG

CEEEEEEEEE. v v v v v v+ 53y ENEEEEEEE
CENEEEEEEE. v v« EANNEEEEEEERENGEN

CENEEEEEEE.~+HE HEER

[+]
[+ |
(+] |
+] |
am

Figure 7. Best First Search algorithm.

The Best First Search algorithm (figure 7) can't resist temptation and finds a seriously non-
optimal path. “Blue” is the starting node, “red” is the destination node, and gray squares are
blocked. Arrows in squares point to the square (node) and from its parent square. Squares with
arrows were tested, and those without were not. The green squares form the path found by the
algorithm. Figure 7 was produced using an applet written by Baur (website accessed 2008).

20

A disadvantage of BFS is that if a concave obstacle is interposed between goal and target, the
search path goes to the bottom of the concavity in its attempt to get closer to the target, and the
final path will reflect this (see figure 7). Thus, in a complex environment, BFS may find a
seriously non-optimal path.

6.3.4 The A* Algorithm

The A* algorithm is a favorite of programmers of three-dimensional computer games. Their
problem, which is moving computer-controlled characters from current location to intended
destination without falling into a hole, walking through fire, or any of the other innumerable
hazards, is strikingly similar to the problem of routing an unmanned vehicle in the real world.
The A* algorithm combines the approaches of Dijkstra’s algorithm and Best First Search
algorithm. To accomplish, this it uses a function f(x) = g(x) + h(x), where g(x) is the cost to get
to the node x, and h(x) is the heuristic (ordinary straight line) Euclidean distance from that node
to the target location. In effect, the A* algorithm picks the next promising node on its search
path by combining g(x), the cost to get to that node from the start, and h(x), the remaining
distance to the target.

6.3.4.1 How the A* Algorithm Works

The cost to get from the start to any given point by means of a given path is computed from the
cost of traversal from node to node. These costs are computed from the weather risks and other
mission risk factors, as discussed earlier.

Like the breadth-first search algorithm, the A* algorithm always searches the lowest f-value
direction first, but because its f-value includes the distance to the target, it wastes less time
searching directions leading away from the target than a pure Dijkstra’s or breadth-first
algorithm. Because that f-value contains costs as well, in contrast to the Best first Search
algorithm, it doesn’t stay distracted by paths that promise but don’t deliver.

Figure 8 is an A* algorithm pseudo code, adapted from Wikipedia (website accessed July 30,
2006).

21

Figure 8. The A* algorithm pseudo code.

22

See figure 9 for the A* algorithm flow chart.

Closedlist := empty set
Openlist := set containing
start node

g(start):=0

Failure

Openlist
empty?

Return
path traced through
parent

[remove x from Openlist]

add x to Closedlist

v

foreachy in adjacent_nodes(x)
if yin closed list
continue
g’ :=g[x] + dist[x,y]
tentative_is_better ;= false
if y not in openlist
add y to openlist
hly] := estimated_dist_to_target
tentative_is_better := true
elseif g'<g[y]
tentative_is_better := true
parent[y] := x
alyl:=9’

\f[y] :=gly] + hly] J
Return

Figure 9. The A* algorithm flow chart.

The A* algorithm itself is fairly simple, and it will always find the best path according to the
definition of cost provided to it, assuming that the cost obeys the uniformly-positive condition
described. This can result in a very impressive, smart-looking solution considering all factors to
a degree impossible for any human analyst. The challenge in implementing a complex path-
finding routine is to intelligently define the path cost to accurately direct the algorithm. For

23

naturally scalar costs like weather and flight time this is trivial, but for more complex notions of
the “best” path, this can get very difficult.

An example of a feature that does not fit well into this paradigm is the notion of a way point.
Determining how to adjust the cost of cells or paths between cells in order to cause the
A*algorithm to “try” to include a semi-optional way point in a route without incurring too much
cost to get there is not straightforward. This can be accommodated by looking at the paths as a
whole, not just segment by segment, and considering “better” those paths that pass close to the
way point; however, searching each path for the node closest to the way point every time a path
IS tested for its cost is very expensive, so using this method efficiently is difficult. A more
straightforward approach is to treat each segment as a separate routing problem, but that risks a
route that orders the segments sub-optimally. Figure 10 shows the A* algorithm.

]

EEE |

ERE BEE]

EEE ER |

EEER =R]

EEEE EEE |

EE ERE EEER]

EEEEE §EE EER]

EE EEE =R n

AN EE EE EEER n

LEELAAAARA EEE ER EEE |
ThELERARAAIAAAAD EE EEE ER B

] PP AL L AARARADAAPAAPA EEE EE EER |
I 1] H EEN n
et tere iAo ARENEENEEEEEEEE BN B EER |
ARttt 4t+ i IENEEEEEREEENREEE =N BEE]
AR 4t Ap A ANEEERS AR ER B L 11 =
WL S ERREFFR] | | [| | EEEEFE] " | [|
REREspt AL AEEERET 2 A2 "EREER o]
AARAR 44 A A HEEEER+ ~ A2 A " EEEEED] n
rane+ A s EEEEET 2 "B EREE B = ||
e td ERX] [| ||| EEFEEE]-EF] | | | I |] |
v HA+ANEERER, 222 2E 2 "HEE]
O LT T T T T Rl ~ER] 111 | B
¢ v+ BEOSRRNSRAaEaEs » + » »ANEEE |]
B v W | | 1 [1 P 110 ||
CAh b U NNy AR EEEERE |
bt b N YR e Y e Y e Y I EEEE n
B T T PRV RV R AR | | |]

o N e e EEE]

o EEEE]
EEEENEEER |

EEEEEEEEE =

AEEDENEE a

]

|

]

|

]

]

]

n

L

—

Figure 10. The A* algorithm.

Using both cost and heuristic allows the A* algorithm to find the best path and still be
reasonably efficient. “Blue” is the starting node, “red” is the destination node, and gray squares
are blocked. Arrows in squares point to the square (node) and from its parent square. Squares
with arrows were tested, those without were not. The green squares form the path found by the
algorithm. This figure was produced using an applet written by Baur (website accessed 2008).

For the example of figure 10, the gain in computational efficiency is obvious. For the three-
dimensional case, where in the number of nodes there is a given number of links from the start
scales as (2* 1+1)"3 rather than (2*1+1)"2 as in the two-dimensional case, even greater gains in

24

efficiency are possible. For example, in a two-dimensional grid, there are 49 nodes within three
links from the source, but in three dimensions, there are 243 nodes.

More examples of the A* algorithm in action, many showing intermediate search states, are
found in Appendix A.

7. AWRT Examples and Screen Shots

An experimental computer application using real weather data, T-IWEDA weather effects, and
real military UAS vulnerabilities has been developed using the A* algorithm. This application
has been named the Aviation Weather Routing Tool (AWRT).

The current user interface for the route planning feature in T-IWEDA appears as shown in Figure
11.

Route Planning
Wery Risky

Low Y 10,000 |Fest v |OMsL ® acL

0 10000 20000 30000 40000 50000
High Y 25000 |Feet v @msL O acL Risky

0 10000 20000 30000 40000 50000
Beginning Time | 12 iE'Se;:ntvzmtu:r V_I 2006 |12 _ oo
Speed | 80 Knots v

L_>Careful

Figure 11. User interface for T-IWEDA route planning feature.

The user may enter a minimum and maximum altitude, the initial takeoff time, and the speed of
the craft, which will be adjusted internally for ascent and descent of the aircraft. This value is
interpreted as ground speed and is NOT currently adjusted for winds. The slider on the right
allows the user to enter the amount of risk the mission can tolerate.

25

Below is a T-IWEDA screenshot showing weather impacts and an initial planned flight path
(figure 12) that encounters severe “red” and marginal “amber” weather.

Figure 12. Straight line path for UAS.

After running the route planning algorithm, the following path (figure 13) is generated, which
completely skirts the severe and marginal weather, staying almost entirely in the favorable
“green” zone, since the routine was run on lowest risk setting.

Figure 13. Path optimized for weather effects.

26

8. Conclusions and Future Directions

Adverse weather impacts significantly impair the effectiveness of our UAS assets. Manual
planning to avoid the adverse impacts is complex, labor intensive, and requires extensive
training. In order to overcome the disadvantages of manual planning, we have built and
demonstrated a mission planning tool for UAS, which finds an optimal route considering weather
and weather impacts on the aircraft system. This system is potentially useful for manned
aviation mission planning as well.

This tool and its future enhancements can be powerful tools to facilitate and simplify the job of
the mission planner. Contemplated real-time versions could also provide crucial data to the
mission commander. The work discussed in this report implemented a routing algorithm that
minimizes the weather cost of a mission from point-to-point.

The demonstrated system implements a new technology with potential to be extended in more
than one direction.

Future enhancements to be considered include addition of new aviation effects, addition of new
UAS vehicles to the database, and a major redesign of the graphics.

The first two suggested system enhancements are fairly self-explanatory, but the proposed
graphics redesign deserves some explanation. Currently, the graphics are an extremely simple
two plus one-dimensional display with a plan view of weather effects and a slice view of a
vertical cross-section along the path actually taken. While we expect these views to continue to
be useful, it is also felt that a truly three-dimensional fly-through view incorporating both
weather and terrain would be valuable. Work on that view is underway.

More fundamentally, UAS are not usually flown in a point-to-point fashion, although that does
form an aspect of their operations. UAS can be improved by redesign to incorporate a greater
variety of mission scenarios, especially including those most commonly flown in combat
conditions. This would require transitioning from minimizing the point-to-point routing cost to
minimizing the overall mission risk. Actual UAS missions typically include route patrol in
support of convoys or other movements, reconnaissance, surveillance, or operations in support of
combat. These missions typically include forms of area patrol in circular or S-shaped loops with
periods of very precise mission commander control to track specific targets or other items of
interest. The redesigned tool should be useful for mission planning but should also be available
during mission execution for assessment of ongoing risks, such as carburetor icing due to water
vapor and ambient temperature, as well as for monitoring fuel status in the light of changing
wind conditions.

27

9. References

Baur, Stefan K. Pfadsuche-Applet. http://www.stefan-baur.de/cs.web.mashup.pathfinding.htmi
(accessed 2008).

HQDA. Army Unmanned Aircraft System Operations. Field Manual Interim [online] 2006, No.
3-04.155.

Hart, Peter E.; Nils J. Nilson; Bertram Raphael. A Formal Basis for the Heuristic Determination
of Minimum Cost Paths. IEEE Transactions of Systems Science and Cybernetics [online] 1968,
Vol. ssc-4, No. 2.

MacGill, James. A* Demonstration. http://www.vision.ee.ethz.ch/~buc/astar/AStar.html
(accessed 1999).

Patel, Amit J. Amit's Thoughts on Path-Finding and A-Star.
http://theory.stanford.edu/~amitp/GameProgramming/ (accessed February 25, 2006).

Rensselaer Polytechnic Institute. Dijkstra's Algorithm.
http://www.ibiblio.org/links/devmodules/graph_networking/compat/page13.html (accessed
1999).

Wikipedia. A* search algorithm. http://en.wikipedia.org/wiki/A-star_search_algorithm#Intuition
(accessed July 30, 2006).

Wikipedia. Breadth-first search. http://en.wikipedia.org/wiki/Breadth-first_search (accessed
August 8, 2009).

Wikipedia. Dijkstra's algorithm. http://en.wikipedia.org/wiki/Dijkstra’s_algorithm (accessed
August 18, 2009).

28

Appendix A. Examples of the A* Algorithm in Action

It is useful to see the A-star (A*) algorithm in action on some simple two-dimensional problems
before we look in detail at its application to UAS routing. James MacGill of the University of
Leeds has created a demonstration applet that illustrates how the A* algorithm works. In the rest
of this section, we will present several screen-shots from the applet with variously difficult
obstacles and discuss their content.

Figures A-1 through A-4 demonstrate easy problems.

B A Demensiraton - Microsafl Intermed Exphoses r:ﬁ'ﬁ
P Ll d
Fle Edt View Foaibes Tosk Help ar
0"“ - &) n: 2 & S Sarch Favorten) - g - ﬁ
71 | i) bt s oveon s chi bk fAcitar el v o
-
s
A% Demonstration
LosiMap [=] Method [Chassica™ =]
™ uo blocks
[impossibie =
Key
. Start Point
™ sed start . End Paim
—:' D Tough
| . V. Touigh
. Impessible
¥ apttnisn
D Easy
I:l Rouse
Go |
1
e
Applee by James Macgll .
] Aot ASt Appen sttt D trerrat

Figure A-1. A simple impenetrable obstacle.

In figure A-1 above, the green square is the origin, the red square is the objective, and the black
squares are impenetrable obstacles.

29

Figures A-2 through A-5 show the solution search at various phases. The numbers in the squares
show the computed cost of movement to that square.

‘A A* Demonstraton - Microsoft Internet Explorer, g@
Fie Edit %iew Favortes Tools Help "
O ek~ () ﬂ E'I D /"‘ Search ,\’ Favorites {64 sl M- el
Acdress] Rtk ffwww, vision.ee ethz, chi~buc astar{AStar html vIB e ks

~
A* Demonstration
Load hap: ~| hiethod Classic AT =
© gethlocks
[~
Key
D Start Point
2.0 B0 0 " setstart . End Point
2.0 1.0 2.0 [3.0 [+0 |5.0 [6.0 DTuu h
2ofofafofofsolaofso .
sofofofpofofiolsolen .V,'I'nugh
10fofofpofolsojsofro .Impossnble
40 fz.0 a0)50 f6nrnfso . & setfinish
iofsofeofroleoln DFBS}'
D Route
i Go
Clear
Applot by James Masgill A
€] Applet AtarApplet started & Internst

a.' start ~cEBEEE N 8 mboe - Mier. .

Figure A-2. The initial stages of the A* algorithm search.

In figure A-2 there are a few oddities. The only movements considered are to edge-adjacent
squares-squares adjacent at a corner have to be reached through two successive edge-adjacent
moves. This is a simplification of the implementation and not a fundamental limitation of the
algorithm. Also, the origin square gets a cost-the cost of moving one square away and then back.
There are many possible paths to each square, but only the lowest cost one is stored. Since the
first value a square gets will be the lowest cost, each square only needs to be looked at once. It
wasn’t necessary to look at the origin square at all of course, so this is again a peculiarity of the
implementation.

Each square of movement here costs one unit, so squares reached in a single move get value 1,
those reached in two moves gets value two, and so on. Only the movement costs are shown in
the squares here, but remember that in choosing which square to evaluate next, the algorithm
looks at the movement cost and the heuristic, the distance from the target. Consider the leftmost
element of the top row of evaluated squares. Cost of movement to the square immediately above
it would only be three, so why is it not yet evaluated, while the square labeled 9 has been? The
square labeled *9’ is only seven units from the target (the heuristic doesn’t know about
obstacles), so f=g+ h =9+ 7 =16. The other square, by contrast, is 17 units from the target, so
its f-value is 3 + 17 = 20.

30

If we had used the breadth-first Dijkstra’s algorithm, it would have checked and scored all
squares out to movement cost nine, so the A*algorithm is significantly more efficient.

The next screen shot (figure A-3) shows the search at a slightly later stage.

W A= Demartraten - Microssdl falenel Feplones

Ml £dt Vew Foortes Took e o
-6y - [(3 P ETEm T
Qe -) - (6] 2] T s Frectes 8 - A5 b
Advese |] bt fewes.vison oo othe.ch-bus tar St sl el L
=
s
A* Demonstration
Losd Map ';| mamnos [Clasei A~ =]
™ gl Blotks
[imgassivie =l
ATITI T T .ﬂl.nrll'{\int
o fro oo oo o T satatan . End Point
aopohofoholokofe
o Tough
afo apofohoko I:‘ s
aopofopopalolofo . W, Tough
5 !
wofhopopofokolo o s dedi . Imgassible
INNNANNN OIXITE | B st e
i 0 o o e 7o o o wiha s et I:‘i-.:\:.
sofeoolrofoEohododiadiadiadisdedz Dkuuw
folrolofo o diadiads s giegiv =
1
Clgar |
Appler by Sames Macgl! &
) Aoplet A ardpiet started & inteeret

Figure A-3. Target found and path is being defined.

In the picture above the search has reached the target, at a cost of 18 units. Path (the yellow
squares) definition now proceeds by choosing the lowest cost edge-adjacent squares, which are
always going downhill. Notice the lowest cost path is not unique. Each monotonically
decreasing path from the red square to the yellow square labeled ”11.0”” is equivalent in cost.

The last screenshot (figure A-4) from this search shows the final path.

31

B A* Demansisaion - Miceesedt Internet Explorer
Fle EAr Vew Favorkes ook Help P
Qost -) (=] (@ 0 Dueh derwens £ (205 - ul
3] g e, vitaor s etha hy<taar festan ik Star e ! [o
5
.
A* Demonstration
Lo Mg |T Memod ?.I»IE]-'-]
£ s bigcins
| [impossioi -
Key
hopofbofo ol [l start Point
zopopolokokofo ™ gt st . End Paint
sofrofiofofolinkoka
— Tough
1o o jill o [ro fra o oo
sofrofiafopobnfofn .‘--""‘"_-:h
sopofokols siia it
kofpoboholololofroli=dis Bl possibie
NHNNEINONTN EEEE | ? ot fnish
Bokobokobolrofo po o disdisgsdiv l:lf'-":\
EoEoBePoo o pogii i giididfisiedgir Route
e 0 oz Qiadiages e div = |
>
Chear |
Arples by Jaez Macml =
[y T re—" & et
Ystat - CBEDE® Wt moesito.. [Eamconiofice.. * D) ae Cemomntratin - T

Figure A-4. The shortest (cheapest) path.

Figure A-4 doesn’t look like the shortest path until we remember that only edge-adjacent moves
are permitted in this demo. Once again, that is an implementation detail, and not a fundamental
feature of the algorithm.

Figures A-5 through A-8 demonstrate a complex path.

A A* Demonstraton - Microsoft Internet Explorer, [MEE
File Edt View Favortes Tools Help o

Qe - @ - [#] [@ POsen Forovons @ (2% @ - L)@

fiddrecs | 8] hitpsjrwnn vison . sth.chi~bucfastarAStar bt v B ks
a

A* Demonstration

Load Map: | Method: Clagsic A* v

@ setblocks

Impossible hd
Key

[start Point
0 C setstat B End Point
20
£1 h D Tough
Bz . V.Tough
il . Impossible
5.0

" setfinish
D Easy

l:l Route

=
=

Applet by James Macgill

(€] Applet astarapplet started 4 Internst
=T

v o

14 start «CEBEEDEe &

Figure A-5. Tackling a complex path.

32

The partially solved path in figure A-5 is complex enough that the correct path to the target may
not be immediately obvious visually. Here we see the search process at an early stage.

Figure A-6 below takes the search a bit further. Reference figure A-7.

N h* Demamiiraten - Micresol| Intoreed Explorer
Fle EdF Vew Favde Took Heb [
F Y N N | i F
Qs -) [& &5 Dz rovoass 0 00 L (o)
w5 |] WL Trmew visics s (Bt st e (A il w ﬂfﬂ .
p-
.
A* Demonstration
LoadMap: [=] Method [Clawsic A* =]
T
| * g blorks
|
[impas=ie =l
o7 s : - Key
| 25 . :
adi i T dos e .-‘-hn[-‘mui
mEm I E O @ £ sttt B End roim
Bokaoholo [l @ 23 10
e 2 : [] Tougn
ENE @ I S 19
Bopohoko [0 0 0 . V. Tough
B
wofofolobo o i dradis 1 i
"',— - . . Impossible
Eope 18 0 1432 sl feigh
E [l XD T 30 11 1 D Easy
frofio e disthedirdia . 20 a0
= B Roate
@ E 10O e dasdoe oy dha don =
Boko B i - — -1
ol
hoguofiodi | Cloar |
| |
Arpler by James Macgpll "
] ipplet A Appiet started B ket

U ke - Mcrosctt 0., B2 Merossft Offcw = T At

Figure A-6. The same search at an intermediate point.

N W Demavritraten - Microsell bnternal Explerer

Fe Ede Vew Favorbes Tooh Help B
Quo- O (¥ B & POsewsn Trrwns @) 3-05 W - | JE

wxr |G Pt femvwen vesion. .ot chyebu fribae (A ar bhesd « B .

rs

A* Demonstration

i~ sedblorks

|impozestie
r

Key
3 - Start Point

g slad . End Paing
= D Tough
. ¥. Tough
—— R E Impossibbe

¥ Easy

u Rowste
| ERE e

] doclet MStarkookt started L

S| T R amm

Figure A-7. Defining the path.

33

Figure A-7 shows the trace back of the lowest cost path (yellow colored squares) underway.
Recall that when we reach the goal node, the optimal path is constructed by linking each node to
its parent until the start is reached. That sequence constitutes the optimal path only in reversed
order. This reverse-ordered construction is necessary since each node has a unique parent, but
not vice versa. A given node may be the parent of multiple nodes.

A A*Demonstraton - Microsoft Internet Explorer FEx
Fle Edt ‘View Favortes Tooks Help "
Qo - @ ¥ Bl @ Psorn Sorones @ 2- 22w - [@
Address | &] http:ifowmy vision, e ethz, chi~buc/astar fAStar el v|Beo ks
-
A* Demonstration
LoadWap: [=] metnos: [Classic A]
i1 Joz Jadsa s
m setblocks
G -
EEEEAT EF DRI Key
e a5 daa des B OB BN .
lodindizg 2.] 12 J2.Jaa [start Point
m B 3. 4o+ Jos. 1 o2 i3 © satstart [End Point
.0 2. O 4 5l (O 0.4 1.0J4.2. B ouen
5] ZE T o fan g
M E I I THE SN B v.tough
13 EEIE ZE 37 Jae.dae Impossibl
o] fis.dedizdied 21 5. 26 7. [] sy
- Clear
Applet by James Macgill A
€] Applet Astarapplet started @ Internet

o £ EEHE & a.. v G traton-... | < EE S l‘) 4:31 PM

Figure A-8. The shortest path.

Note that in this very complex path problem (figure A-8), the efficiency advantage of the A*
algorithm routine is much less pronounced. Nearly the entire search space ended up being
tested. Note also that it did find the shortest path solution. Like Dijkstra’s algorithm, the A*
algorithm will find a shortest path if it exists, that is, if there is a passable path to the target. For
this particular problem, its advantage in efficiency is small, but not zero.

34

Appendix B. A*Algorithm Code for Route Finding

public GridPath [] optimizeFrom(GridPath aStart,
arl._.tsiweda.ProgressTracker aTracker)
throws RoutePlanningException
{

//Gets the busy message
String progressMessage = aTracker.getProgressMessage();
//Adds aStart to the queue of paths to expand
add(aStart);
//Start out with aStart as the best path (since it"s the only
path so far)
GridPath best = aStart;
GridPath oldBest;
//Does the cost calculation for the initial path
aStart.calculateCost();
int i;
//The takeoff time
long time = theSession.theStartTime;
//0ptimizes until the best path is the same as the target point
for(i = 0; best I= null &&
Ibest.equals(createGridPath(theSession.theEnd, best.theTime)); i++)
{
time = best.theTime;
//Updates the progress message once in a while
if(i % 1000 == 0)
aTracker.setProgressMessage(progressMessage + " (" +
i + " paths tested)");
//Sets the expanded flag
best.theExpanded = true;
//Expands the node
expand(best, aTracker);
oldBest = best;
//We"re done with this path--don®"t consider it anymore
removeBest(oldBest);
//Try the next best path
best = getBestPath();

//best is now the actual best path
if(best == null)
throw new DataRangeException(’’Cannot reach destination
within available™
+ ' forecast range: " +

arl.tsiweda.util.lwedaUtils.print(time));

log.debug('Best(" + 1 + ")=(" + best.theX + "™, " + best.theY + ",
' + best.thez + ")");

aTracker.setProgressMessage(progresshMessage);

//Go back through the parents to get an array representing the
path

Java.util_List pathList = new java.util_ArrayList(Q);

while(best = null)

{
pathList.add(best);

35

best = best.theParent;

}

jJava.util_Collections.reverse(pathList);

GridPath [] ret = (GridPath []) pathList.toArray(new GridPath
[pathList.size(Q)]);

//Release resources

clear();

return ret;

36

List of Symbols, Abbreviations, and Acronyms

A* A-star

ARL U.S. Army Research Laboratory
AWRT Aviation Weather Routing Tool

BED Battlefield Environment Division

BFS Best First Search

DoD Department of Defense

FMI Field Manual Interim

HQDA Headquarters, Department of the Army
IMETS Integrated Meteorological System
IWEDA Integrated Weather Effects Decision Aid
Met meteorological

NWP Numerical Weather Prediction
T-IWEDA Tri-Service Integrated Weather Effects Decision Aid
TDA Tactical Decision Aid

UAS Unmanned Aircraft Systems

UAV Unmanned Air Vehicle

37

No. of
Copies Organization

1 PDF ADMNSTR
DEFNS TECHL INFO CTR
DTIC OCP
8725 JOHN J KINGMAN RD STE 0944
FT BELVOIR VA 22060-6218

3HCs US ARMY RSRCH LAB
ATTN RDRL CIM P
TECHL PUB
ATTN RDRL CIM L
TECHL LIB
ATTN IMNE ALC HRR
MAIL & RECORDS MGMT
2800 POWDER MILL ROAD
ADELPHI MD 20783-1197

1CD US ARMY RSRCH LAB
ATTN RDRL CIM G
TECHL LIB
BUILDING 4600
APG MD 21005-5066

5CDs US ARMY RSRCH LAB
RDRL CIED
EDWARD M MEASURE
BLDG 1622
WSMR NM 88011

5 CDs US ARMY RSRCH LAB
RDRL CIEM
DAVID KNAPP
BLDG 1622
WSMR NM 88011

5CDs US ARMY RSRCH LAB
RDRL CIEM
TERRY JAMESON
BLDG 1622
WSMR NM 88011

5 CDs PHYSICAL SCIENCE LABORATORY
RDRL CIE D
ANDREW BUTLER
NEW MEXICO STATE UNIVERSITY P.O. BOX 30002
LAS CRUCES, NM 88003-8002

Total: 25 (1 PDF, 21 CDS, 3 HCs)

38

